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Many rubber-like materials can undergo finite elastic strains and, for moderate loads, 
can be considered incompressible. The plane deformation of an incompressible material has 
been examined within the framework of the nonlinear theory of elasticity by a number of au- 
thors. For example, such studies were conducted in [1-4] in different coordinates and with 
the use of different measures of strain and the corresponding stresses; along with exact so- 
lutions of certain problems obtained by a semiinverse method, the authors used the method of 
successive approximations in combination with expansion in a small parameter. 

The plane deformation of an incompressible material is studied below in the coordinates 
of the strain state and the Almansi and Cauchy tensors are used as the measures 
of strain and stress. Equations in displacements (for the initial coordinates) 
and in stresses (including those for the Airy function) are established. The sufficient 
conditions for their ellipticity are obtained. For a Mooney material, we examine the form 
and type of equation for the Airy function with loads of different intensity. We also find 
two of its exact solutions containing free parameters. Exact solutions to problems concern- 
ing the loading of a curvilinear tetragon and an elliptical ring by special contour loads 
are given in a nonlinear formulation. 

i. It is known [5] that the equilibrium of a uniform isotropic incompressible material 
in the nonlinear theory of elasticity can be described in the coordinates of the strain state 
by equilibrium equations, the incompressibility condition, the Murnagan law linking the 
stresses and strains, representations of the strains through the displacements, and expres- 
sions for the strain invariants; these are augmented by boundary conditions which may be 
assigned on the boundary of the deformed body: 

d i v P  + p f  = O, 8 1 - -  2 ~  4- 4~a = 0, 

P - - q G + p ( G - -  , dY, = 2s)--TE, 2~ = Vu + (Vu)* - -  Vu . (Vu)* ,  
( 1 )  

s 1 = t r e ,  2% ~ ( t r e ) 2 - - t r s ~ , e 3  = de t e ;  

ulz~=h, P.nlz  ~ = p ,  

w h e r e  p ,  q ,  F ,  a r e  t h e  d e n s i t y ,  h y d r o s t a t i c  p r e s s u r e ,  and  e l a s t i c  p o t e n t i a l ;  E l ,  % ,  a n d  e 3 
are the principal strain invariants; u,I, n, h, p are the vectors of the displacements, body 
force, outward normal, and boundary displacements and stresses; G, P, and r are the metric 
tensor and the tensors of the stresses (Cauchy) and strains (Almansi); E u and Ep are those 

parts of the surface of the body on which the displacements and stresses have been assigned. 

Let the material be subjected to the action of potential forces with the energy V and 
let it be under plane strain conditions. Then 

pf = - - V V ,  % = O, F ,  = f , ( e l )  

and the Murnagan law reduces to a quasilinear connection between the stresses and strains 

P = ~ f '  - -  q) G - -  2F 'e ,  f '  = dF/de~, f (~1) = p f ,  (~1). 

In this case, the main problem is the plane problem of elasticity. The relations for this 
problem are satisfied in a two-dimensional deformed region D, while the boundary conditions 
are assigned on its boundary L. In Cartesian coordinates x, y of the strain state, Eqs. (i) 
for the plane problem have the form 

ax + - ~ - =  O,--77--x + au O, ( 2 )  
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e a - -  2e 2 = O, ~, = ex,~ + euv, ~., = e~:eu~ - -  e ~ ,  ( 2 )  

P =  = - q  + F ' ( t  - -  e = ) ,  i - -  e =  = (1 - -  au~/ax) ~ + (au/ax)  ~, 

Pyy = - -q  + F ' ( t  - -  eu,a), t - -  eyy = (1 - -  au~,/ay)" + (au,:/ay) 2, 

P,~ = - -  F'2e~u, 2e~ u = ~ - -  i~71 + ~-x - -  -07/' 

u~ lz,~ = h= (s), u~ IL,, = h~ (s), 

Px~nx + P~unu IL v = p ,  (s), P~un~ + Puunu Iz v = Pu (s) 

( t h e  C a r t e s i a n  c o o r d i n a t e s  o f  t h e  componen t s  o f  t h e  v e c t o r s  and t e n s o r s  a r e  d e s i g n a t e d  by 
t h e  same s y m b o l s  a s  t h e  q u a n t i t i e s  t h e m s e l v e s ,  b u t  w i t h  d i f f e r e n t  s u b s c r i p t s ;  L u and Lp a r e  
t h e  p a r t s  o f  t h e  b o u n d a r y  L on which  t h e  d i s p l a c e m e n t s  and s t r e s s e s  we re  a s s i g n e d ,  w h i l e  s i s  
t h e  a r c  L ) .  

2. Wi th  t h e  a s s i g n m e n t  o f  o n l y  t h e  d i s p l a c e m e n t s  on t h e  b o u n d a r y  o f  t h e  r e g i o n ,  t h e  
p l a n e  p r o b l e m  i s  c o n v e n i e n t l y  f o r m u l a t e d  i n  d i s p l a c e m e n t s .  The l a t t e r  i s  o b t a i n e d  by e x -  
c l u d i n g  t h e  s t r e s s e s ,  s t r a i n s ,  and h y d r o s t a t i c  p r e s s u r e  f rom ( 2 )  and i s  w r i t t e n  i n  t h e  fo rm 

~ {F'[{t 
~y2{ Lay --~/+ 0-~ aylJJ 

{ , , . [ ( ,   ,.l ll ,,,. 
_ _ -,- (, - 

l - - - ~ x  ] i - -  ay ] ay ax = 1, = (e l )  , 

u,l t .  = h~(s), uyl, = hu(s), 

(3) 

where the invariant sz, transformed by means of the incompressibility condition, is repre- 
sented by the expression 

2e,  = - - ( a u J O x  - -  O u / O y ) ' - - ( O u x / O y  + Ouu/Ox)2. 

These  r e l a t i o n s  do n o t  c o n t a i n  t h e  p o t e n t i a l  e n e r g y  o f  t h e  f o r c e s ,  and s i  ~ 0 i n  them.  The 
h y d r o s t a t i c  p r e s s u r e  i s  d e t e r m i n e d  f rom (2 )  i n  t h e  fo rm 

M 

q + V =  [ ( a ( q + V ) d x  
�9 k Ox + - -  

M o 

o ( q + V )  dy~ + d ,  d const, 
Oy ] 

(4) 

where 

a (q+V)  F '  t + - -  - -  
Ox = o z /  \ O x ]  D ay( Lay \ T i x / + T x  1 - -  OylJ) '  (5 )  

M0 and M a r e  p o i n t s  o f  t h e  r e g i o n  D. By v i r t u e  o f  (3 )  and ( 5 ) ,  t h e  i n t e g r a l  i n  ( 4 )  i s  i n d e -  
p e n d e n t  o f  t h e  p a t h  o f  i n t e g r a t i o n .  The s t r e s s  f i e l d  i s  d e t e r m i n e d  f rom Eqs .  (2 )  and ( 4 ) .  

P r o b l e m  ( 3 ) ,  r e p r e s e n t e d  i n  e x p a n d e d  fo rm,  can  be s i m p l i f i e d  somewhat  i f  we change  o v e r  
f rom t h e  d i s p l a c e m e n t s  t o  t h e  i n i t i a l  c o o r d i n a t e s  by means o f  t h e  f o r m u l a s  u x = x - ~ ( x ,  y ) ,  
Uy = y - r l (x ,  y ) .  I t  t h e n  t a k e s  t h e  fo rm [6] 

~1. /,, o% o:'n t o~ o,,1 o~on [.~'~z ~ + B*z + T = 0, = 1 
h+ z=a axha/}  ax ay ay ax ' ( 6 )  

~lL ---- x(s) - -  hx(s), ~1~ = y(s) - -  hy(s). 

Here, we use T to denote the terms containing the lower derivatives, while the coefficients 
have the values 
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o~ + F.CO~ (7) A 3 o = - - F ' ~ y + F " C ~ x '  A ~ I = [ F e + F " ( B - - A I ] o z  O-y' 

Ao8 F '0~ F"C O~ Ai~ = [-- g '  + F" ( B - -  A ) ] ~ - -  F " C ~  
= -~ - -  o~' 

an an F" C an Bso = - -  F '  + F"C b~' B~ i = [F' + F" ( B  - -  A)] 7z + ~ ,  

Boa F'  o~l y" t?  an F'  an _ F " C  an = Uz - -  - ~ ~ '  B~2 = [ -  + F" ( B  - -  A)] ~ ~-x' 

A=( V B=( V (0nU 0n0n 
kOx] + kTxJ ' kOy] + k@] ' C = ~ x - ~ +  OxOy" 

I n  a c c o r d a n c e  w i t h  [ 7 ] ,  t h e  c h a r a c t e r i s t i c  d e t e r m i n a n t  o f  s y s t e m  (6)  i s  a f o u r t h - d e g r e e  
p o l y n o m i a l  

h 3 \k+/=3 ] (s) 
= F' (== + ~2) (Ba2 _ 2 C ~  + A~ ~) - -  F" [C ( ~  - -  ~ )  + (B - -  A) a~] 2. 

As follows from (7) and incompressibility condition (6), the first two quantities from the 
group A, B, and C are positive and are connected with each other by the condition A > 0, B > 
0, AB - C 2 = i. As a result, the below quadratic form is positive-definite 

B a  = ~ 2 C = ~  + A ~ 2 > 0 .  (9 )  

I t  can  be c o n c l u d e d  on t h e  b a s i s  o f  (8 )  and (9 )  t h a t  

A > 0  at  F ' > 0 ,  F " ~ 0 ,  (10)  
A < 0  at  F ' < 0 ,  F " ~ 0 .  

With conditions for the elastic potential (i0), the characteristic equation A = 0 has 
no real roots. Thus, nonlinear system of equations (6) is elliptic for any of its solutions. 
As a result, (i0) are sufficient conditions of ellipticity of the equations describing the 
plane strain of an incompressible elastic material. 

3. When only stresses are assigned on the boundary of the region, the plane strain 
problem is conveniently formulated in stresses. Equations (I) for this problem appear as 
follows in complex coordinates of the strain state z = x + iy, z = x - iy 

OPWOz + O(P~2--2V)/~z = O, 

p n  = p22 = _2F,eU,  p12 = 2F'  (l - -  ~12) _ 2q, 

e n = e 2 2 = 2 ~  t - - ~  , l - - e l ~ =  t - -  1 - -  - - - -  

81 -- 282 = 0, ei = ei~, 48= = (~12)2 _ 8i182% 

L ds ds 

(11) 

Equations (ii) contain contravariant complex components of the vectors and tensors, which 
are connected with their Cartesian components by the formulas 

u 1 = u 2 = u = u ~ + i u u ,  pl = p 2  =_p = p ~ . + . i p u ,  

p i l  _= p22 = p ~  __ Pu~ --k 2iPxy, pi~ = p ~  _}_ puu, 

e 11 = e ~2 ~ eXX  - -  BUy -~- 2iexu, e ~z = exx q- euu. 

If we exclude the displacements from the expressions for the strains themselves, their 
first and second derivatives, and the incompressibility condition represented in the forms 
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( t  - -  812) 2 - -  E11E 22 = i ,  

we obtain the strain compatibility condition in nonlinear elasticity for an incompressible 
material 

\ OzO-z +l/t + 1~ ~ Oz ~ ] = 

=2Ret__ ke ) ~ Oz j-- ~ ( 3 +  2 e nl~)l 0~u77 

(13) 

Proceeding on the basis of the expressions for the principal invariants of the two- 
dimensional stress tensor and their combinations through the complex components of the 
stresses 

i)i = p1=, 4p 2 __ (p1~)2 pnp~.2, I = PIT--4P, = pnp.,.2 (14) 

we f i n d  t h a t  I w i l l  a l s o  be i n v a r i a n t .  We can use  (11) and (12) t o  e s t a b l i s h  i t s  c o n n e c t i o n  
w i t h  t h e  l i n e a r  s t r a i n  i n v a r i a n t  and w i t h  h y d r o s t a t i c  p r e s s u r e  

I = 4[F'(e~)]2[(t - -  q)2 _ 1], pr,  + 2q = V4[F"(8,)] 2 q- I .  

It is easily seen that 

at dl/de, =p: 0 q =- el(I), 2q = ]/ '4[F'(I)] '~ 4- I -- P~. (15) 

It follows from (ii) and (15) that the strains are represented through the stresses by means 
of formulas that do not contain hydrostatic pressure: 

e** = ~--~ ---- - -PnJ2F'(I ) ,  t --  8 ~2 ---- l / l  + I / [2F' ( I )P.  (16)  

I n s e r t i o n  o f  (16) i n t o  (13) y i e l d s  t h e  s t r e s s  c o m p a t i b i l i t y  e q u a t i o n  in  n o n l i n e a r  e l a s -  
t i c i t y  f o r  an i n c o m p r e s s i b l e  m a t e r i a l .  Having augmented i t  by t h e  e q u i l i b r i u m  e q u a t i o n  and 
boundary  c o n d i t i o n  ( 1 1 ) ,  we o b t a i n  t h e  problem of  t h e  p l a n e  s t r a i n  o f  an i n c o m p r e s s i b l e  ma- 
t e r i a l  in stresses and the complex coordinates of the strain state 

[pn 12~ Re I + ~-#-~] -- 
4 t + (2F,)2 ] \~-~r e~ o~ 2F' (2F,)~ oz2 

= 2 t l e  [(-Pii~ e O p u o p l l  ] \ ~ # . ~ / a z 2 F ,  o_z2 F, -- I OPnlZ(~g-~[- 3 + 2 ( 2 ~ ]  ]pll'2"~ I ~ pll 2 , ,  ~ - ~  , (17) 

where F'(1), while I is determined through the stress by Eq. (14). 

If we introduce the Airy function U, assuming that 

]911 = /)22 = __402U/O-Z2, p12  = 2 V  + 402U]Oz~, ( 1 8 )  

then we can represent (17) in the form of a boundary-value problem for this function: the 
function must satisfy a nonlinear fourth-order equation, while its first derivatives must 
take specified values on the boundary of the region 

2 s R o  2),0  2 + = 

0 l OU 

-= ~ �9 dz 

0 
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4. Let us examine a Mooney material [3], which to a certain extent reflects the be- 
havior of incompressible rubber-like materials with finite strains and in the case of plane 
strain can be characterized by an elastic potential with one constant 

F------eel, c = const>0, F' =--c, f" = 0. 

For the Mooney material, problem (19) will be 

(20) 

2 03U 2SoRe(2~ U o4u . - -  oau \ =  _ - -  - OZ~Z 3 V S o ~ )  8Ro[(O2U~ 2 03U 03U] r OaU 2 0 z  3 

$ 

I S ~  az2[ ' 0z L = 2  ~-)0 + i p . V ~ ) d s - - t ( s ) .  
0 

(21) 

We will study the form and type of equation for the Airy function with applied loads 
of different intensities. We will use P0 and o = P0/c to denote the characteristic load and 
dimensionless stress and we will set U, = U/P 0. Introducing these quantities in (21), we 
obtain 

~ )  I ~ {2(~ a2u* a~v* V ~ .  = -- (t + 2S,) ~ + 2S, Re ~ az* az ~3 

I 3 2 2 2 
+ 8,~"R~ k o~ ~ ] ozo~ ~ o~" j - = ~  ~, s ,  = a + 4 , J - " l - ~  i .  

(22) 

We will distinguish the following loading regimes: light loading at P0 << c (0. << i), moder- 
ate loading at P0 ~ c (0. - I), and heavy loading at P0 >> c (o >> I). 

With moderate loading, all of the terms in (22) are roughly of the same order. Thus, 
all of them should be retained. This equation is a general nonlinear model. Equation (22) 
is of the elliptic type, as is the corresponding system of equations for the initial coordi- 
nates. By virtue of (20), ellipticity conditions (i0) are satisfied for the latter system. 
This result can also be established directly. In fact, representing (22) in the real vari- 
ables x, y 

( V i ,z 02U. a4U, ~ 40 .2 a~u* 04u* 2(~ - -  + H = ~- 32 Re + ~ oz.,. a-z ----~2 - -  az ~ o-~-~z ~ ] 

= (E- -34)  ~ ~N a4U* + 2E ~ 2N ~ + ( E +  M) ~ + H = O ,  
8x - - ~  -- " Ox 30y OxZOy ~ Ox Oy - - - -~  Oy ~ 

o {02U. 02U,~ O*U, 
E =  V i + M~ + N*, M = - Z  ( - J o~ ),  N= '~  o ~  

(where H represents terms with lower derivatives), we find that its characteristic equation 
for any solution has only complex roots 

A . =  ~ ( 8 0 / 0  a4ff* ~ a " ~ = ( t + k 2 ) [ ( E - - M ) k 2 + 2 N k + E + M ] = O ,  

k = --~/~,  kl. ~ = + ~, k~,a = ( - - N  + i ) / (E--M).  

(23) 

With light loading, the terms in (22) which contain the dimensionless stress will be 
small compared to the other terms. Ignoring these terms leads us to a biharmonic equation 
which establishes a linear model of elasticity 

AAU, = t6~U./(Oz 20~*). (24) 

As (22) ,  Eq. (25) i s  of  t he  e l l i p t i c  t ype :  t he  c o r r e s p o n d i n g  c h a r a c t e r i s t i c  e q u a t i o n  [which 
follows from (23) at E = i, M = N = 0] has purely imaginary roots 

A, ~ ( t  ~- k2) 2-~ 0, kl, 2 ~ - 4 - i ,  k3, a----4-i. 
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Thus, the linear theory of elasticity follows from the nonlinear theory of elasticity for a 
Mooney material with characteristic loads which are small compared to the elastic constant 
of the material. 

Finally, with heavy loading, the terms in (22) that contain the dimensionless stress 
will now be large relative to the other terms. Leaving only the largest terms in the equa- 
tion, we obtain a new nonlinear fourth-order equation which establishes a special nonlinear 
model of elasticity: 

210=u, =tlefo=~,o'u, o~'u, o'rz, '1 (~ ~~ ~  ~ ~ ~ I S 
I g ~  0~ ~ J 

In  c o n t r a s t  t o  (22)  and ( 2 4 ) ,  Eq. (25)  i s  o f  t h e  compound t y p e :  i t s  c h a r a c t e r i s t i c  
equation [which follows from (23) after the small terms are ignored] has two imaginary and 
two coincident real roots 

Eo 

A , = ( t  §  ~)[(E o - M o )  k 2 § 2 4 7  o + M o ] = O ,  

kl, 2 = "-F i, ka, 4 = --No/(Eo--Mo), 

---- ],/-M'~ + No ~, 2/1Io = a~U,/Ox ~ - -  a :g , /oy  ~, N O = O~U,/(Ox Oy). 

The change in the type of equation for the Airy function at loads which are considerably 
greater than the elastic constant reflects the change in the mechanical properties of the ma- 
terial under these conditions. 

Let us return to the general case and change over in Eq. (21) from the variables z, z 
to other complex variables m, ~ by means of the analytic function �9 = ~(z), which is equiva- 
lent to changing over from the Cartesian coordinates x, y (z = x + iy) to orthogonal curvi- 
linear coordinates X, ~ (m = X + iD) in the same plane. The following representations are 
valid for the determinant of the transform and the derivative of the logarithm of the de- 
terminant 

Q(T, T) o(,~, ~) - ( - )-1 OlnQ z~ (26) =a(~,~)=~'~:= z~z~ , A(~)= a~ ~" 

Transformed problem (21) for the function U(s, $) will be written in the form 

2 S { 2 R e V ( a ' u  7iau~ [ o'u 3A a~u 2 a~u § § a,2a~§247247 
or o~ ~ .4 ~ o~ d~ / l 

+ A + + + (A' + 2A2)a~] I_ - -  

c~- f l aSu 3A O2U + (A' + 2A~) a~ + + A 
e~ [ I a~ 3 + a~ 2 o~ ~ a~ a ~  i 1' 

S = - ~ + 4  a~ ~ + A  a~ ' 2 -~  L dT~ 

(27) 

(L' is the transformed contour L). 

Due to (18), the physical components of the stresses in the coordinates X, N are ex- 
pressed through the solutions of Eq. (27) by means of the formulas [8] 

a~u 
p ~ ,  + p ~ .  = p~2 = 2 V  + 4Q a~ a~" 

( 2 8 )  

This equation for the Airy function in the form (27) is convenient to use to find classes of 
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exact solutions by selecting the coordinate transformation and finding U as a function (for 
example) of a single real variable (such as ~ or ~) or their combination. We then use the 
resulting Airy function to determine the stress field, which can in turn be employed to solve 
certain boundary-value problems with boundary conditions of a special form. Let us look at 
some examples. 

5. We assume that the quantity A which figures into (27) is constant and that the cor- 
responding coordinate transformation and its determinant have the expressions 

z = exp(--AT), A = const, Q --  (AA) -1 exp (AT + A~-). 

It follows from the relations 

z = r e x p  (iO), ~ = ~  + i ~ ,  A = a + i b ,  
_ bO-~atnr aO--blnr (29)  

a2~b 2 ' ~ - -  a2~b z 

t h a t  t h e  c u r v e s  ~ = c o n s t  and ~ = c o n s t  form o r t h o g o n a l  f a m i l i e s  o f  l o g a r i t h m i c  s p i r a l s .  

Assuming t h a t  body f o r c e s  a r e  a b s e n t  (V = 0 ) ,  we seek  t h e  s o l u t i o n  o f  Eq. (27)  in  t h e  
form 

U = U(~), ~ = A~ + A~ = 2(ak - -  b~), 

so t h a t  t h e  A i r y  f u n c t i o n  s a t i s f i e s  t h e  e q u a t i o n  

2 s { 2 ( u "  + u ' ) ( u ~ v +  3 u ' "  + 2u") + (u'" + u"U - 

- y ~ ( u ~ v +  2 g ' "  + g " ) }  = s ( u "  + u'?'(LT'" + u")(u'" + 

+ 3 u "  + 2u ' )  - -  c ~ e_~p ( - 2 ~ ) { ( u ' "  + 3 u "  + 2 u ' )  ~ + ( u ' "  + u " ) ' } ,  s = c ~ exp ( -2 ~ )  + 4 ( u "  + u ' )  ~, 

w h i l e  t h e  components  o f  t h e  s t r e s s e s  (28)  a r e  d e t e r m i n e d  by t h e  e x p r e s s i o n s  

P ~  --  P~,~ + 2iPx~ = --  4(exp ~)(U" + U')]I2llA ! ~, 

Pxr + 1)g~ = 4(exp ~)U". 

E q u a t i o n  (30)  can be c o m p l e t e l y  i n t e g r a t e d .  

we reduce it to the equation 

(30) 

(31) 

In fact, by substituting the function 

2(U" + U') = c exp (--$)sh ~ (32) 

Returning to 

w" = w'(w' + 1) 

and a f t e r  i n t e g r a t i o n  i t  y i e l d s  exp ( -w)  = h + g e x p  ~, h = c o n s t ,  g = c o n s t .  
(32)  and i n t e g r a t i n g ,  we o b t a i n  

4(exp ~ ) ( U " + U ' )  = c [ ( h + g  exp ~ ) ' l - - ( h + g  exp ~)1, 
(33)  

4(exp ~)U' = c { ( h - X - - h ) ~ - - h ' L l n  t h + g  exp ~ ] - - ( h + g  exp ~ ) - - ] } ,  ] = const. 

E q u a t i o n s  (31)  and (33)  d e t e r m i n e  t h e  s t r e s s  f i e l d ,  which i s  d e p e n d e n t  on t h e  f r e e  p a r a m e t e r s  
g, h, f: 

(34) 

'-~ } 
p ~  = ~ I + (h  - -  h -1 )  i + h -1  ]n I h + g exp ~ I + h + g exp g + m (h + g exp ~) ,  

c {  l +m - -m(h  +gexp~)}. P . .  = y / + (h - -  h-a)~ + h - l ln  [h + g exp ~ I ~ h § 7e~p 

P~.~ = nc {(h + g exp ~)-1 __ (h + g exp ~)}, 
a 2 - -  b 2 a b  

m ~ - - - a .  ~_~, b2 , n =  a ~  , ~ = 2 ( a ~ - - b , t t ) .  
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The stress field which is found can be used to solve a number of boundary value prob- 
lems. For example, we will examine a curvilinear tetragon whose sides are segments of spi- 

rals(29): 

= ~ "  % =%+; ~ = P "  ~ = ~§ ( 3 5 )  

The boundary stresses on the sides of the tetragon, corresponding to stresses (34), have 
variable normal and tangential components determined by the expressions 

= ~• ~+ = 2(aE:~ -- bg), 

(Pz)+ = 2 (]  + (h - -  h -  0 ~i  + h -x In l h + g exp ~• + 

i - m + m (h + g exp ~:~)}, 
+ h-f- g exp ~• 

(Pt~):~ = nc{(h + gexp  ~:t:) "1 - -  (h + g exp ~ ' )} ;  

[~---- [~+, ~----- 2(aE -- blx• 

(PRO+ = ] + (h - -  h - ' )  ~:f: + h-x  In l h + g exp ~• [ + 

'I + m (h  -4- g exp ~ •  
+ h + g e x p g ~ - - m  

(p~)+ = nc{(h + g exp ~ : ) " - -  (h + g exp ~-)}. 

(36) 

Equations (34) give the exact solution of the prpblem of the equilibrium of a tetragon (35) 
with boundary conditions (36). 

In particular, with b = 0, Eqs. (29) will be ~ = -(inr)/a, D = -@/a. Here, the curves 
X = const and D = const form families of concentric circles and rays. In Eqs. (34), m = I, 
n = 0, and the stresses depend only on one coordinate: 

Pss = ( c / 2 ) { ] + ( h - - h ' ~ ) ~ + h ' ~ l n  l h + g e x p ~  l + h  + g e x p ~ } ,  

( 3 7 )  P ~  = (e /2){/4-  (h - -  h ' t )~  + h " t  In ]h + g e~p ~l + 2(h + g exp ~)'~ - -  h - -  g exp ~}, 

P ~  = O, ~ = 2as 

In this case, tetragon (35) is bounded by segments of circles and rays and is loaded only 
by normal loads which are constant on the curved sections and variable on the straight sec- 
tions: 

= ~• ~• = 2a~• ~ . ) •  = 0, 

(ps)• =(c/2){1 + (h - -  h-1)g• + h -~ In Ih + g exp  g• + h + g exp ~• ( 3 8 )  

= ~ i ,  ~ = 2a~, @~)• = O, 

(p~)• = (c/2){/ + (h - -  h-~)~ + h -~ in [h + g exp ~[ + 2(h + g exp ~)-~ - -  h - -  g exp ~}. 
\ 

Equations (37) solve the problem of the equilibrium of a part of a circular ring bounded by 
two radii with boundary loads (38). 

6. Let the coordinate transformation have the form 

z = a c h e ,  a = a  = c o n s t ,  z = x +  iy, �9 = E + i l x ,  
x =  a c h % c o s ~ ,  y---- a s h ~ s i n g ,  

x~/(a ch ~,)2 + f i ( a  sh ~0)~ = t ,  x2/(a cos ~t) "z - -  f / ( a  sin ~)~ = 1. 

It is clear from this that the curves I = const and ~ = const form orthogonal families of 
ellipses and hyperbolas. The quantities (26) are equal to 

Q = tl(a 2 sh z sh~) ,  A = - -  ch r/sh T. 
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We seek a solution of Eq. (27) of the type 

U = U(N), N ~-- ch �9 + ch ~---- 2 ch % cos ~, 

the equation and the stresses (28) in the absence of body forces accordingly being 

[c~a ~ + 4(U")-~IU ~v = 2(U'")~(2U" + ]/"c~a ~ + 4 ( U " ) 2 j ,  

4U" sh ~ ~ 4U" 
Pz~, - -  P~t~ + 2iP~t~ = - a s sh �9 sh ~' Pz~" + Ptm = a--~-" 

(39) 

Integration of this equation twice yields 

4 U "  = ca~[g~l + h - -  (g~l + h)-~] ,  

g =- cons t ,  h ---- cons t ,  ~1 ---- 2ch ~ cos i~. 

E q u a t i o n s  ( 3 9 )  a n d  ( 4 0 )  d e t e r m i n e  s t r e s s  f i e l d s  c o n t a i n i n g  t h e  f r e e  p a r a m e t e r s  g a n d  h :  

(40) 

= ~ ~ - - - o ~ - ~  ' 
Px~ -~ [g~l -5 h - -  (gTI + h) - x ]  (1 + ch 2~) (1 - -  cos 2ta) 

p ~ a  _-- _ "2c [gY1-5 h - -  (gT I -5 h) - ~  ] (t - -  oh 2 k ) c h  2k --(loos+ cos 2 9 ) 2 9  ' ( 4 1 )  

sh 2X sin 2~ [gn +  -(gn + P~ = ~ �9 

In particular, the stresses at the boundaries of an elliptical ring X_ <_ I _< 7~+ have 

the values 

at % ---- %• 0• ---- 2 ch %• cos ~, 

[gn+ + h -  (gn• + h ) - q  (t + oh 2x• (t -- cos 
----" oh 2~+ - -  cos 2~ 't 

c sh 2~,+ sin 2l~ 
(42) 

Here, the breaking force on the boundary contours is determined by the expressions 

c 1 ~ ( t -  ch2~+) ( t  + cos2~t) 
(P~)• = -- y [g~i + h--(gn• + h ) -  ] ch 2 ~ ; - -  cos 2~r " (43) 

Equations (41) and (42) give the solution of the problem of the equilibrium of an elliptical 
ring subjected to periodic contour loads. In particular, at X_ = 0, the internal contour 
becomes a segment of the x-axis -a 5 x ! a, while the problem in question becomes the prob- 
lem of the loading of an elliptical region with a straight slit. The boundary conditions 
on the slit are simplified: 

%_ = O, (p~)_o= c[2g cos ~ + h - -  (2g cos ~ + h ) - l ] ,  ( p ~ ) _ ~  

i.e., the slit is loaded only by a normal load. The breaking force (43) on the slit takes 
the values 

at ~ =/= 0; ~ %_ = 0, (p~)_0= 0, 

at ~ = 0 %_ = 0, (p~) 0= c[h + 2g -- (h + 2g) -1], (44) 

at ~ =.~ %_ = 0, (p~) 0: c[h-- 2g-- (h-- 2g)-l], 

i.e., it is equal to zero on the entire slit except for its ends and is finite and different 
at the ends of the slit (at h i 2g # 0). It is easy to see that at g = 0 the contour load 
(42) is symmetrical (it is constant on the slit). Accordingly, the breaking forces (44) at 
the ends of the slit are equal and finite. 

i. L. A. Tolokonnikov, 
119, No. 6 (1958). 
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ANALYSIS OF FRINGE PATTERNS BY THE METHOD OF INTEGRAL BOUNDARY EQUATIONS 

IN THE SOLUTION OF PLANE ELASTOPLASTIC PROBLEMS 

S. L. Zolotukhin and V. K. Kosenyuk UDC 535.417 

In experimental studies of plane problems of the mechanics of deformable bodies by 
moire methods [1-3] or holographic interferometry with the use of superimposed interferom- 
eters [4], the information that is obtained is represented in the form of patterns of inter- 
ference fringes. By analyzing these patterns, it is possible to determine the stress and 
strain fields in the region being studied. There are various approaches and corresponding 
algorithms for solving problems [2, 5-9, etc.] based on determination of fringe-order func- 
tions N(x, y) in the region being studied, the transition from these functions to functions 
of the plane components of the displacements u(x, y) and v(x, y), and determination of their 
partial derivatives. 

The fact that the strain components are calculated by differentiating reconstructed 
functions makes these methods highly sensitive to errors and distortions in the initial data 
and to the choice for the criterion of their approximation. At the same time, the informa- 
tion obtained from the experiment is inadequate to correctly approximate the initial func- 
tions, since it is necessary to know not only the orders of the fringes at the boundaries 
of the region but also their derivatives. Application packages currently available for ana- 
lyzing fringe patterns [9-12] automatically sample and numerically filter the initial dana, 
which reduces the laboriousness of the calculations considerably. However, the algorithms 
used for subsequent analysis still have the deficiencies noted above. 

The authors of [13] noted the efficacy of synthesizing holographic interferometry and 
numerical potential methods to study the elastoplastic state of three-dimensional bodies. 
Here, to establish the stress-strain state inside the region, it is sufficient to have in- 
formation that can be obtained from the fringe patterns at its boundaries. Among the ad- 
vantages of this approach is the smoothing effect inherent in integral methods: the errors 
of the boundary conditions turn out to be considerably lower farther into the region than 
near the boundaries. 

In the present study, we examine the feasibility of using theoretical solutions ob- 
tained by numerical realization of the method of integral boundary equations (IBE) to ana- 
lyze fringe patterns in aN investigation of elastoplastic fields of stress and strain. 

i. Formulation of the Problem. Four fringe patterns are recorded [4] to find the 
plane components of the displacements u(x, y) and v(x, y) with the use of superimposed inter- 
ferometers. In this case, the values of the displacements can be found from the formulas 

Novosibirsk. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 
2, pp. 164-170, March-April, 1990. Original article submitted November ii, 1988; revision 
submitted January 23, 1989. 

320 0021-8944/90/3102-0320512.50 �9 1990 Plenum Publishing Corporation 


